lohaag.blogg.se

Aurora lights
Aurora lights












aurora lights

(It should not be confused with Earth's 5 atmospheric layers, though, which are categorized according to air density, temperature, meteorological activity, and gravitational force. It starts several hundred kilometers above the Earth's surface but extends further than 600,000 kilometers (370,000 miles) in altitude. It must also be dark so during the summer months at auroral latitudes, the midnight sun prevents auroral observations.The Aurora Borealis occurs in the magnetosphere, the magnetic field that surrounds and protects the Earth from incoming solar winds.

#Aurora lights free#

Of course, to observe the aurora, the skies must be clear and free of clouds. ( Tips on viewing the aurora and maps of the typical extent of the aurora). During very large events, the aurora can be observed even farther from the poles. During large events, the aurora can be observed as far south as the US, Europe, and Asia. When space weather activity increases and more frequent and larger storms and substorms occur, the aurora extends equatorward. At these polar latitudes, the aurora can be observed more than half of the nights of a given year. The best place to observe the aurora is under an oval shaped region between the north and south latitudes of about 60 and 75 degrees.

aurora lights

These diffuse patches often blink on and off repeatedly for hours, then they disappear as the sun rises in the east. Then in the early morning the auroral forms can take on a more cloud-like appearance. This is the peak of what is called an auroral substorm. At some point, the arcs may expand to fill the whole sky, moving rapidly and becoming very bright. Late in the evening, near midnight, the arcs often begin to twist and sway, just as if a wind were blowing on the curtains of light. During the evening, these rays can form arcs that stretch from horizon to horizon. Often the auroral forms are made of many tall rays that look much like a curtain made of folds of cloth. Aurora comes in several different shapes. During major geomagnetic storms these ovals expand away from the poles such that aurora can be seen over most of the United States. The aurora typically forms 80 to 500 km above Earth’s surface.Įarth’s magnetic field guides the electrons such that the aurora forms two ovals approximately centered at the magnetic poles. This is similar to how a neon light works. When they relax back down to lower energy states, they release their energy in the form of light. In these collisions, the electrons transfer their energy to the atmosphere thus exciting the atoms and molecules to higher energy states. The accelerated electrons follow the magnetic field of Earth down to the Polar Regions where they collide with oxygen and nitrogen atoms and molecules in Earth’s upper atmosphere. (Protons cause faint and diffuse aurora, usually not easily visible to the human eye.) The electrons are energized through acceleration processes in the downwind tail (night side) of the magnetosphere and at lower altitudes along auroral field lines. The Aurora Borealis (Northern Lights) and Aurora Australis (Southern Lights) are the result of electrons colliding with the upper reaches of Earth’s atmosphere.














Aurora lights